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In [i] Lyakhov proposed a model for rocks and soils which considers two limiting nonlinear 
compression diagrams; static (as s § 0) and dynamic (as e § ~), as well as diagrams defining 
unloading of the medium. These diagrams refer to a single-axis deformed state, while defor- 
mation is regarded as having a volume nature. 

In the case of longitudinal (weak) waves it can be proposed that residual deformations 
do not develop, and that static and dynamic compression diagrams are linear. With such 
assumptions the model of massive media with consideration of volume viscosity and plasticity 
[i] transforms to a model of a linear viscoelastic medium. The problems of shock wave inter- 
action with viscous media with an undeformed boundary, movable or immobile, have been con- 
sidered with this model previously [2, 3]. Questions of damping of seismic waves which devel- 
op in intense explosions and earthquakes lead to the problem of passage of longitudinal 
waves through an absorbing layer. Below we will present a solution to the prohlem of longi- 
tudinal wave propagation in a viscoelastic semispace containing an absorbing layer or obstacle. 
The solution is ~ obtained by the characteristic method using a computer and the calculation 
technique presented in [i, 4]. 

The principles of longitudinal wave propagation in homogeneous viscoelastic media were 
considered in [5-7]. Wave problems for elastic layered media were considered in [8-11]. 

Problem Formulation and Method of Solution. The pattern for calculation in Lagrangian 
variables (h, mass; t, time) is presented in Fig. I. We consider the semispace including 
the layer hl--h2. The equations of state of the semispace and layer are considered linearly 
viscoelastic, but with differing physicomechanical characteristics. Below the subscripts 
i = i, 2, 3 will refer to the medium ahead of the layer, the layer, and the medium beyond 
the layer. 

The behavior of a linear viscoelastic medium (standard linear body) is defined by the 
equation 

where o i and ~i are the longitudinal components of the stress and deformation Censors; EDi 
is the dynamic compression modulus, and Esi , the static; ~i is the volume viscosity coeffi- 
cient; ~i, viscosity parameter; si = dEi/dt; hi = doi/dt. 

A wave is created in the initial section h = 0 by a load varying by the law 

~1 = o m , ~ s i n ( n t / O )  ~ I  0 ~ t ~ ~ ,  (2) 

wh~re Oma x is the maximum value of the load; 0 is the oscillation semiperiod. The oscilla- 
tion frequency f = I/(2e) and m = 7/0. 

From the initial section an incident wave propagates, corresponding to the region 1 in 
the h, t plane (Fig. i). The velocity of the incident wave front is co~. After the inci- 
dent wave reaches the layer at h = h~ a reflected wave is formed (region 2), which in turn 
is reflected from the initial section h = O, forming region 6, etc. The propagation velocity 
of all fronts ahead of the layer is equal to Co.i. When the incident wave interacts with the 
layer there is formed in the latter a transmitted wave (region 3), with front velocity cos. 
After the transmitted wave reaches the rear boundary of the layer h=, a reflected wave is 
formed (region 4) together with a wave radiated into the medium behind the layer (region 5). 
The velocity of all fronts in the layer is equal to co2. The velocity of the radiated wave 
front is cos. After further multiple reflection and refraction regions 7-10, etc. are 
formed. 
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The basic equations of medium motion in Lagrangian variables have the form 

Ouilot - -  Ooi!Oh = O, Otq'Oh - -  Oe i 'PoOt - -O,  (3)  

w h e r e  u i i s  t h e  p a r t i c l e  v e l o c i t y  (mass  v e l o c i t y ) ;  P o i  a r e  t h e  i n i t i a l  d e n s i t i e s  o f  t h e  m e d i a .  

S o l u t i o n  o f  t h e  p r o b l e m  r e d u c e s  t o  i n t e g r a t i o n  o f  s y s t e m  (3 )  i n  e a c h  m e d i u m ,  c o m p l e m e n t e d  
b y  Eq.  (1 )  a n d  b o u n d a r y  c o n d i t i o n s ;  i n  t h e  i n i t i a l  s e c t i o n  Eq.  (2 )  i s  s a t i s f i e d ,  w h i l e  on t h e  
incident and transmitted fronts where the viscous properties of the medium do not manifest 
themselves, 

o i = --CoiPo~U i : O, u i = - -co ie i  = O, Co~ : V~E9 /poi, (4) 

where col is the velocity of the beginning of the perturbation (front) defining the dynamic 
compression diagram. On the medium boundaries hl and h= the continuity condition 

~ 1 :  %, u l :  ~ and % :  %, u ~ =  u~ ( 5 )  

is satisfied. 

System (3), complemented by Eq. (i), is hyperbolic, with characteristic relationships in 
the form 

g(o i, e i) : ~i/~li - -  E v i E s i ( e  i - -  ~ i / E D i ) / ( E D I  -- E i)~]i .  

(6) 

We will transform to dimensionless Lagrangian variables and dimensionless parameters 

0__ 0 
x : ~ t lh /Co lPo1 ,  T : l i l t ,  0 i - -  o~i/(Ymax ~ e i = e ~ / e m l ,  

~o = u~/%n, eml = ~max/EDl' u~l = --  ~max/%eol" 

(7) 

In these variables the initial equations take on the form 

auo a~o o o ~ 
2 ~F+~0, ~7§ =0, 

~ 0  , ~ ~0 " 0 O. = E D i / E ~ I .  i T ~ i  ~ : a ~ d - P i ~ i a ~ ,  P i : ~ i / ~ t l  ' ?i 

As u § i the equation of state of the medium transforms to the equation of a Hook elastic 
medium. 
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The boundary ::onditJons are as follows: 

l i l~r.zz>iD(ll0T ibr , r -  II and o ~ l : ~ o o ,  

iJ ~ f }  N o i - e :  i - u  i -~O for a ' - :kiT,  

(8) 

where o is the dimensionless circular frequency, ~0 ~ -S~q0 = m',%; I, i -%f0~ %d',,~ �9 
between media o ~ = o ~ and u ~ = u~ o ~ = o ~ and u ~ = u ~ 

The characteristic relationships are: 

On the boundary 

d ~ "r- l,',dtt~ __ l'id'  along lines 

do'  = - -  V , < )  aao.  e  d x  - :  O .  

Upon transition from one medium to another the slope of the characteristics changes just 
like the wave front lines. For all media the time and spatial coordinate remain common in 

both dimensional and dimensionless variables. Dedimensionalizing Eqs. (1)-(6) with the aid 

of the dimensionless variables and quantities of Eq. (7) causes the dimensionless values 
o o are not interchangeable, since after a i and u i for all media to be interchangeable while E? 

' I 

dedimensionalization with the parameters of the first layer after simple transformations of 
o gi/Eml, E2~ = e2/gm2, and E3~ E3/Em3. The deformations obtained for the Eq. (6) we obtain El = = 

various layers are comparable only in dimensional values. 

Wave parameters in the media depend on 19 dimensional constants EDi , Esi , qi, Poi, Col, 
Omax, e, hl, h2 (i = i, 2, 3). Upon transition to dimensionless variables the problem con- 

tains 12 dimensionless parameters ~i@, Yi, ki; Pi, xl, andx2. This permits applying the re- 
sults of one variant of computer calculation in dimensionless variables to a number of combi- 

nations of dimensional problem constants. 

Calculation Results and Analysis. Calculations were performed on a BESM-6 computer for the 

variants presented in Table i. The choice of variants was based on available experimental 
values of the dimensional constants. In soils y varied from 1.5 to 5, and ~ from 150 to 1500 
sec -I [i]. For rock Y lies in the interval from 1 to 3 and ~ from 104 to 108 sec -I [i, 12, 

13]. If the value of ~ is taken equal to 103 sec -~, then the table values correspond to a 
quite wide range of initial load frequencies, i.e., from 0.05 to 50 sec -~, and for ~ = 104 

sec-1~ from 0.5 to 500 sec -I 

We will consider the properties of the medium identical before and after the layer, so 
that k~ = k3 = 1 and y~ = y~. To reduce the number of variants we will take Pi = ki- If 
y= > yz, we obtain the problem of longitudinal wave propagation in a semispace containing an 

absorbing layer, since increase in y corresponds to an increase in the difference between 

dynamic and static compression diagrams, i.e., to an increase in the medium's absorption co- 

efficient and decrease in perturbation propagation velocity [7]. For the case y1 = Y2 = Y3 = 
y we obtain a homogeneous semispace. If Y2 < Y~, we have a semispace which contains a deform- 

able obstacle. 

The general principle of longitudinal wave propagation in media can be considered with 

the example of variant 3 (Fig. 2). Curves 0-7 represent dimensionless distances x, equal to 
0, 3, 5, 7, i0, 18, 26, 34. The layer boundaries are located in the sections xl = 5 and 
x2 = i0. The specified loading, creating a wave in the initial section, is steady state and 
according to Eq. (8) changes sinusoidally (curve 0). In the other sections, as is evident from 

Fig. 2, the variation of o ~ with time is not steady state. 

o for the first passage of the wave is greater than In all sections the maximum stress o m 
o increases with removal on subsequent passages. The time required for the first passage o m 

from the initial section, i.e., increases with x. When the wave passes through the layer the 
o values of Om beyond the layer for the first passage and subsequent passages vary depending 

on the layer parameters. In all variants considered the functions o~(x) were constructed from 

o for the first arrival of the wave. values of ~m 

The effect of the ratio of the moduli of dynamic and static compression of the layer 
o (y= = ED2/Es2) on values of Om in media with ~18 = i0, x~ = 5, andx2 = i0 are presented in 

Fig. 3. Here and in subsequent figures the curves are numbered in correspondence with the 
enumeration of Table i. The Y2 values chosen for variants 1-4 correspond to media which 
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absorb as compared to the media ahead of and behind the layer. Moreover, one and the same 
Y2 may correspond to different k=, since y= is the ratio of ED2 to Es=. Decrease in k= at 
constant Y2 corresponds to a decrease in wave impedance of the layer or decrease in wave propa- 
gation velocity within the layer. 

Curves l~ ~ in Fig. 3 show the functions o~(x) at X = i.i; 2; 4 respectively (YI = Y= = 
y3 = y). In these cases the maximum dimensionless value of ~ decreases monotonically with dis- 
tance, and the greater the value of y, the more intense the damping. Change in Y2 at constant 

= . o begins to y1 Y3 changes the behavior of curves l~ ~ With increase in Y2 the value of a m 
drop sharply in sections of the medium ahead of the layer and continues to fall in the initial 
sections of the layer itself (curves 1-4), since upon interaction with the absorbing layer the 
wave reflected from the layer is a rarefaction wave. When the incident wave front reaches the 
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back boundary of the layer a reflected compression wave appears. Superposition of the inci- 
dent and reflected waves produces a rise in ~ in the back sections of the layer. Further, 
at medium depths within the layer the changes in o~(x) are analogous to curve 1 ~ but with a 

o By increasing the value of y= i.e., choosing materials having differing level of o m- 

different viscous properties, a greater reduction in stress beyond the layer can be achieved 
(curves i, 2). Upon decrease in the propagation velocity of longitudinal waves within the 

o beyond layer, which corresponds to increase in porosity of the layer material, the value of o m 
the layer increases even more (curves 3, 4). When the propagation velocity of the wave within 
the layer is equal to one-fifth of the velocity ahead of and beyond the medium (k2 = 0.2), the 

o beyond the layer is decreased by almost 95% (curve 4). It is evident from this value of o m 
that at some values of y2 and k2 complete extinction of the wave passing through the layer 
can be achieved. However this depends on the frequency of the wave. 

O 
The effect on o m of the load oscillation frequency f = 1/(20) was considered with the 

calculations of variants 5-10 (Fig. 4). For constant ~i = 103 sec -I variants 5-10 (Fig. 4) 
describe waves with frequencies of 50, 5, 1.67, i, 0.5, and '0.05 sec -I respectively, while for 
~i = i0 ~ sec -I they refer to frequencies of 500, 50, 16.7, i0, 5, and 0.5 sec -I. For these 
variants the layer boundaries are located in the sections xl = 50 and x2 = 70 (dashed region 
in Fig. 4). For this case YI = 73 = i.I, Y2 = 4, and k2 = 0.5. 

o Upon passage of high-frequency waves through an absorbing layer the value of o m beyond 
the layer decreases significantly (curve 5). Decrease in wave frequency by a factor of i0 

O 
produces an increase in ~ beyond the layer by a factor of approximately 6 times (curves 5 and 

O 
6). Further decrease in frequency changes the behavior of the Om(X) curves intensely. Upon 
passage of low-frequency waves through an absorbing layer the wave proeess develops slowly and 
is quasistatic. In these cases during the time required for passage of the wave the absorbing 

o 
layer deforms significantly, as a result of which the value of o m in the layer increases 
(curves 8, 9). For very-low-frequency waves the layer has no effect on wave parameters (curve 
lO). 

The ratio of wavelength ~ to layer thickness r is defined in terms of the dimensionless 
parameters as X/r = 2D1e/(x2 -- xl). 

In variants 5-10 considered in Fig. 4 the ratio %/r is equal to i, i0, 30, 50, i00, and 
i000. It is evident from Fig. 4 that at a value of %/r < 30 the wave parameters beyond the 
layer attenuate, while for %/r ~ 30 they either increase or remain unchanged. Other conditions 
being equal, to achieve more effective wave damping beyond the layer it is necessary to deter- 
mine the layer thickness from the condition r = 0.1%, m. 

o be- Removal of the layer from the initial section causes a reduction in the value of o m 
yond the layer (curve 3 of Fig. 3 and curve 5, Fig. 4). However this phenomenon is observed 
only for high frequency waves at %/r < i0. 

o 
The effect of dimensionless distance xl on the value of Om beyond the layer at constant 

layer thickness for %/r = i0 is shown in Fig. 5. Here ~le = i00, Y1 = Y2 = I.i, Y2 = 4, k2 = 
0.5. Curves Ii ~ and 12 ~ show o~(x) in a homogeneous medium at y = i.i and 4, with ~i0 = i00. 

In these cases the distance from the original section to the leading edge of the layer 
' O x~ or location of the absorbing layer does not affect the value of o m beyond the layer (curves 
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11-13). The behavior of the curves o~(x) for variants 11-13 is similar to the o~(x) curves 

considered in Fig~ 3. 

With increase in layer thickness, which also corresponds to reduction in the ratio 
o decreases during wave propagation in the absorbing layer itself, which %/r, the value Om 

O 
leads to a higher value of o m beyond the layer (curve 14). 

o 
The effect of change in YI and Y3 as well as Y2 on the function Om(X) is shown in Fig. 

6. Curves 15~ ~ and 20 ~ describe damping of the maximum stress at fixed locations in a 
homogeneous medium (YI = Y2 = y3 = u at Die = i0 and ~ = 2, 4, 1.02 (curves 15~ ~ , 
respectively). Curve 20 ~ is for y = 1.02 and ~i~ = i00. 

For %/r < i0 changes in YI and Y3 have an insignificant effect on o~ beyond the 
layer (curve 2, Fig. 3 and curves 16, 17, Fig. 6). The quantities Y2 and k= begin to 
affect stress damping beyond the layer here (curves 15, 17, 18). Increase in wave frequency 
also changes the behavior of o~(x) (curves 17 and 19). 

For the case Y2 > Y1 = Y3 the layer becomes a deformable obstacle, if we take Y2 = 
1.02, then we have an elastic obstacle located in a viscoelastic semispace. Screening of 
longitudinal waves by an elastic obstacle was studied with variants 20-25. As is evident 
from the calculation results, after passage through an elastic obstacle longitudinal waves 

o 
maintain practically the same o m value beyond the obstacle as in the absence of the obstacle 
(curves 20 ~ and 20, 21). At very low frequencies the longitudinal waves scarcely"notice" the 
elastic obstacle (curves 20 ~ and 21). 

The principles of change of the parameters u~ and s~ upon passage of longitudinal waves 
through an absorbing layer or elastic obstacle in a semispace are analogous to the changes in 

O 
o m presented in Figs. 2-6. 

Thus, the parameters of longitudinal waves in a semispace vary in the presence of an 
absorbing layer as functions of the physicomechanical properties and thickness of the layer, 
as well as incident wave frequency. In propagation of longitudinal waves in linear layered 
inhomogeneous viscoelastic media at certain ratios of wavelength to layer thickness the absorb- 
ing medium plays the role of a frequency filter. Longitudinal waves are attenuated insignifi- 
cantly on passage through elastic obstacles. 
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